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The theory of bilinear time series models is considered in this paper. The sufficient 
conditions for asymptotic stationarity of the bilinear time series models are derived, and 
the expressions for the variance and covariance are obtained. The conditions for the 
invertibility of the model are also included. The estimation of the parameters of the scalar 
bilinear time series model is considered. The bilinear models are fitted to sunspot numbers 
and also to a P-wave of a nuclear explosion. The forecasting of sunspot numbers is also 
considered. 
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ESTIMATION; FORECASTING; PRESSURE WAVE; SUNSPOT DATA; VOLTERRA SERIES; 
YULE-WALKER EQUATIONS 

1. INTRODUCTION 
THE classical theory of time series analysis has been well developed over the past two decades, 
and excellent accounts of this theory are available, for example in Hannan (1962,1970), Box and 
Jenkins (1970) and many other books. An important assumption that is made in the classical 
theory is that the structure of the series can be described by a linear model such as an 
autoregressive, moving-average or mixed autoregressive moving-average model. 

The assumption of linearity is often a very dubious one. The theory of Volterra (1930) and 
Wiener (1958) on functional series representation has provided great stimulus to the 
development of non-linear models, but unfortunately Wiener's representation is too general and 
the statistical estimation of the Wiener kernels is unwie'ldy. In view of this, several authors 
(Ozaki and Oda, 1977; Jones, 1978; Haggan and Ozaki, 1 9 8 0 i ~ o n ~  and Lim, 1980) have recently 
discussed certain more specific types of non-linear models. 

A particular class of non-linear models which have been extensively discussed in the control 
theory literature is the bilinear models. (See, for example, Ruberti, Isidori and d'Alessandro, 
1972; Mohler, 1973.) The interesting feature of a bilinear system is that though it is non-linear, its 
structural theory is analogous to that of linear systems. (See Ruberti, Isidori and d'Alessandro, 
1972 and references therein.) 

The theory developed so far has dealt with the structural theory of deterministic bilinear 
differential equations, and only recently have attempts been made to extend these results to 
models where the input is a random function (see Granger and Andersen, 1978a). 

Let {X(t)) be a discrete parameter time series, satisfying the difference equation 

where {e(t)) is an independent white noise process and co = 1. We define the model (1.1) as a 
bilinear time series model BL (p,r, m,k) and the process {X(t)) as a bilinear process. In their 
monograph Granger and Andersen (1978a) have considered the statistical properties of the 
model BL (1,0,1,1). The autoregressive-moving average model ARMA (p, r) can be obtained from 
(1.1) by setting b,,, = 0 for all 1 and 1'. 

In this paper the object is to study systematically the general theory ofthe bilinear time series 
models BL (p, 0, p, 1) and BL (p, 0, p, q). In Section 2 we consider the state space representations 
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of these models. The conditions for stationarity and the expressions for the covariance are given 
in Section 3. The invertibility condition is derived in Section 4. The estimation of the parameters 
of the bilinear time series model is considered in Section 5. In the final section the fitting of 
bilinear time series models to sunspot data, and to the P wave of a seismological time series, is 
considered. The forecasting of sunspot data is also considered in the same section, and the 
forecasts are compared with the forecasts obtained from the best linear model. 

2. VECTOR FORM OF THE BILINEARMODELS 
It is well known that the linear autoregressive moving average models can be written in the 

form of a first-order vector difference equation (see Anderson, 1971; Priestley, 1978, 1980) and 
this vector form is known as the state space form. It is convenient to study the properties of the 
process when the model is in the state space form because of the Markovian nature of the model 
(Akaike, 1974). We shall represent the bilinear models in the state space form and various 
properties are derived in the following sections. 

Consider the bilinear model BL (p,0, p, I), i.e. 

Let us define the matrices 

and C' = (1,0,0, ...,O), H' = (1,0,...,O), and let xt(t) = (X(t), X(t - I), ...,X(t -p +1)). With this 
notation, we can write the model (2.1) in the form 

We define this model (2.3) as a vector form of the bilinear model BL (p, O,p, 1) and denote it by 
VBL (p) (the initial letter emphasizing the fact that (2.3) is written in the vector form). 

Suppose we have the bilinear model BL (p, 0, p, q). We define the matrix A, and the vectors C, 
H and x(t) as before. Define the matrices 

Then the vector form of the bilinear model BL (p, 0, p, q) is (VBL (p,4)). 

In the following sections, we consider the conditions for stationarity and invertibility for the 
bilinear model BL (p, 0, p, 1). For convenience, we use the state space form of the model, namely 
VBL (p)given by (2.3) for these derivations. 

3. EXPRESSIONS THE COVARIANCES CONDITIONS STATIONARITYFOR AND FOR 
In this section we obtain the conditions for asymptotic stationarity of the time series X(t) 
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satisfying the model (2.3).We have 

E(X(t))= H'E(x(t)), 
cov ( X ( t )  X( t  +s))= H'E(x(t)-E(x(t)) (x(t  +s)-E(x(t+s))'H. 

In the following derivation we assume that the random variables {e(t))are independent and 
each e(t)is distributed N(0, I ) ,  and obtain expressions for cov (x( t )  x(t +s)). 

Let 

p(t) = E(x(t)), V ( t )  = E(x(t) x'(t)), 

S(t)= E[x(t)  x'(t) e(t)], W ( t )= E[x(t )  xl(t)  e2(t)]. 


Taking expectations on both sides of (2.3)and noting E(x(t)e(t))= C ,  we obtain 

p(t +1)= Ap(t)+BC = A i p ( l ) +  C A' )BC.(;I: 

If B = 0 and p(1) = 0 then p(t) = 0 for all t >1;and hence in this case no condition on the matrix 
A is necessary for the first-order stationarity. Otherwise, we proceed as follows. 

Let the spectral radius of a matrix A, p(A), be 

where J+,(A)is the ith eigenvalue of A, and it is known that p(A)< ( 1  A 1 1  where 1 1  A ( 1  is any norm 
(Wilkinson, 1965). A sufJicient condition for 

lim kt p( 1) +(i'~ j BC]) 
t + m  

to be finite is that p(A)<1. Under this condition the mean value p is then given by 

We now obtain the conditions for second-order stationarity. From the mode1 (2.3)we have 
E{x(t )  e(t +1)) = 0,  E{x( t )  e(t) e(t +1)) = 0. Also from (2.3)we obtain 

V ( t )= AV(t-1)A' +AS(t- 1)B' +BS(t-1) A' +BW(t-1)B' +CC', (3.4) 
where 

S(t)= Ap(t-1) C' + BCC' +Cp(t-1)A' +CC'B', (3.5) 

In obtaining the expression for W(t) ,we have made use of the fact that the random variables 
{e(t))are Gaussian with E{e(t))= 0 ,  E{e2(t)) = 1, so that E{e4(t))= 3. The above derivation is 
still valid even if e(t)is not Gaussian, but in this case E{e4(t))= 3+K4, where K4 is the fourth- 
order cumulant. 

From (3.4)and (3.6)we have 

V ( t )=AV(t-l)A'+BV(t-l)B'+AS(t-1)B' 
+BS(~"-1) A' +2BCC'B' +CC'. (3.7) 

We now assume that the process {x ( t ) )is first-order stationary so that p(t) = p and this implies 
S(t)= S, where 

S = ApC' +BCC' +Cp'A' +CC'B'. (3.8) 
The expression (3.7)can now be written as 
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where 
A, = ASB' +BSA' +2BCCfB'+CC'. 

To find the conditions under which, as t + co, V(t) tends to, say, V, where V does not depend 
on t, we proceed as follows. 

Let D, E and F be three square matrices, each of order p x p. Let dij be the element 
corresponding to the ith row and jth column of the matrix D. Let D ,  (j= 1,2,...,p) be the jth 
column of D. Define 

and the Kronecker product D Q E, which is of eider p2 x p2, as D Q E = (dij E). Then we have 
(Neudecker, 1969), vec (DEF) = (F' Q D) vec (E), vec (DE) = (IQ D) vec (E). Using the above 
notation, we can write (3.9) as 

This is a first-order difference equation in vec {V(t)}, and the solution of this equation can be 
written in power series of (A Q A +B Q B). For the solution of vec {V(t)} to converge, it is 
suficient that 

This is the sufficient condition for the time series x(t) generated from (2.3) to be asymptotically 
second-order stationary. The condition (3.12) becomes 

Assuming the condition (3.12) is satisfied, we obtain the expression for the variance and 
covariance of {x(t)}. Let V = E(x(t) xf(t)), then we have from (3.9) 

which can be solved explicitly since the equation (3.13) is linear in V. Here we do not need the 
explicit solution. From the model (2.3) we have 

E(x(t+1) xf(t)) = AE(x(t) xt(t)) +BE(x(t) x'(t) e(t)) 
= AV +BS, (3.14) 

and for s >  1, 

Let C(s) = E(x(t+s)-p) (x(t) -p)', then we can show that 

where 

A2 = BppfB'+App'Af+ASB' +BS'A' +2BCC'A' +CC' -pp', 
A3 = App' +BS -pp'. 
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If we now suppose A and B are of the form (2.2), we obtain from (3.18) 

where y(s) = cov (X(t +s) X(t)). These equations are the same as the Yule-Walker equations for 
an ARMA (p, 1) and thus show that the bilinear model BL (p, 0, p, 1) has the same covariance 
structure as an ARMA (p, 1). 

It is interesting to note that for a homogeneous bilinear system obtained from (2.3) by 
putting C = 0, we have 

p=O, S = O  and V(t)=AV(t- l )A1+BV(t-1)B' .  

If V(l) = 0 (and C = 0), we have V(t) = 0, t 2 1. Proceeding as above we can show that a 
homogeneous bilinear system degenerates into a deterministic system if p(A Q A +B Q B)< 1 
as t + GO,and if p(A Q A + B  Q B)> 1, the system explodes. 

If we now consider the model BL(1,0,1,1) given by 

the sufficient condition for the second-order stationarity of the process X(t) is that a: +b:, < 1, 
and expressions for the covariances can be obtained from (3.18). The condition for stationarity 
and the expressions for variance and covariances agree with the results of Granger and 
Andersen (1978a). 

In this section we obtained the conditions for the existence of second-order moments for the 
bilinear process satisfying the VBL (p) model. It must be noted that higher order moments need 
not always exist (Granger and Andersen, 1978a, p. 40). 

4. INVERTIBILITYTHE VBL (p) MODEL OF 

For a time series model to be useful for forecasting purposes, it is necessary that it should be 
invertible. The invertibility of linear time series models has been discussed by Box and Jenkins 
(1970). Recently Granger and Andersen (1978~) have provided another definition of invertibility 
which can be applied to both linear and non-linear time series models. Their definition is as 
follows. Let X(t) be a discrete parameter time series satisfying the model 

x( t )  =f {x( t-j), e(t-j), j = 1,2,...,P))+e(t), (4.1) 

where the {e(t)) are independent random variables. The random variables {e(t)) are not 
observable. Let g(t) be an "estimate" of e(t), and let the initial values of g(t) be set equal to zero. 
The model (4.1) is said to be invertible if 

lim E{e(t) -Z(t)) +0, (4.2)
i-+m 

when the model and the parameters are known completely. In this section, using this definition, 
we obtain a sufficient condition for the invertibility of the VBL(p) model. The condition 
obtained by Granger and Andersen (1978~) for the BL (1,0,1,1) model is a special case of our 
result. 

Consider the VBL (p) model given by (2.3) and let X(t) = H'x(t). Let g(t) be an estimate of e(t) 
satisfying the difference equation 

X(t) = H'Ax(t -1)+H'Bx(t -1) g(t -1)+H'Cg(t). (4.3) 
From (2.3) and (4.3) we have 

where t l ( t )  = e(t)-g(t). Assuming the process x(t) to be ergodic and proceeding as in Granger 
and Andersen (1978c), we can show that 
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where [(s)= {H'Bx(s))/H'C. Taking limits on both sides of (4.5), 

lim E{[:(t))< lim [E{[2(s))]t .  
t + w  f - w  

The right-hand term of the inequality tends to zero as t + co if E{c2(s))< 1, which implies that 

H'BE{x(s) xl(s)) B'H <(H'C)2. (4.7) 
For a given A, B, H and C ,  one can evaluate explicitly V = E{x(s)x'(s))which satisfies the 
equation (3.13).The condition (4.7)is a sufficient condition for the invertibility of the V B L ( p )  
model. The condition given by Granger and Andersen (1978a, p. 74) for the bilinear model 
X ( t )= b, ,  X( t  - 1) e(t -1) +e(t) can be deduced from (4.7)by appropriate substitutions. 

The conditions for the stationarity and invertibility of the model BL ( p ,0 ,p, q) are not 
considered in this paper. 

5. ESTIMATIONOF THE PARAMETERSTHE BILINEAROF TIMESERIESMODEL 
We now consider the estimation of the parameters of the scalar bilinear time series model 

given by 

where the {e(t))are independent and each e(t)is distributed N(O,0,2).Here we assume the model 
(5.1) is invertible, and further assume we have a realization ( X ( l ) ,  X(2), ...,X(n)) on the time 
series {X( t ) ) .The joint density function of {e(m), e(m + I ) ,  ...,e(n)),where m = max ( p ,q)+ 1, is 
given by 

Since the Jacobian of the transformation from {e(m), e(m+ 1), ...,e(n)) to {X(m),  
X(m+ I ) ,  ..., X(n))is unity, the likelihood function of {X(m),  X(m + I ) ,  ...,X(n))is the same as the 
joint density function of (e(m), e(m + I ) ,  ...,e(n)).Maximizing the likelihood function is the same 
as minimizing the function Q(0),where 

n 

Q(0)= C e2(t), (5.2)
t=m 

with respect to the parameters 0' = (a,, a,, ...,a,; b,,, ...,b,,). For convenience, we shall write 
8, = a,, 82 = a ,,...,0, =.b,, where R = l+p+pq. 

Then the partial derivatives of Q(0)are given by 

dQ(e) = 2  5 e(t)% ( i =  l , , . . . , ~ ,  
dB, t = m  

d2 Q(0) = 2 de(t)de(t)  d2e(t)
-------+2 C e(t)-----

dQidOj * = ,  dB, dej ,=, dBidej7 

where these partial derivatives of e(t)satisfy the recursive equations 

de(t) de(t - j)  +
dbkm, j 

X 
= 1 

fij(t)= = - X ( t - k ) e ( t - m l )  ( k = 1 , 2,...,p ; m l = 1 , 2 ,...,q), (5.5) 
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d2 e(t)  d2 e(t - j )  = O  ( i , i '=O,1 ,2  ,...,p),
da, da,, +j=l ' j ( ' )  do, d a ,  

d2 e(t)  d2 e(t - j )  +X( t  -k )de(t-m,)  = 0
da, dbkml +j=l ' j ( ' )  dbkm1da, da, 

( i = 0 , 1 , 2 ,...,p; k =  1,2 ,...,p ; m ,  = 1,2,...,q),  

d2 e(t)  4 d2 e(t -j )  +X ( t  -k')
de(t-m') 

= -X( t -k ) - de(t-m )  
Q,, dbk,mlt+j=t 'j'l(')dbkml dbk,rn1, dbkm 1 dbk,ml, 

( k , k ' =  1,2 ,...,p; m l , m ;  = 1,2,...,q), (5.6) 
P 


b j ( t )= C b,  X ( t  - 1). 
1 = 1  

We assume e(t)= 0 ( t  = 1,2, ...,m -1) and also 

From these assumptions and equation (5.5)it follows that the second-order derivatives with 
respect to a, ( i  = 0,1 ,2 ,  ...,p) are zero. For a given set of values of {a,) and {b l j )one can evaluate 
the first- and second-order derivatives using the recursive equations (5.4), (5.5) and (5.6).Now let 

and let H(0)  = [d2 Q(0)/dei doj]  be a matrix ofsecond-order partial derivatives. Expanding G(8),  
near 8 = 0 in a Taylor series, we obtain 

Rewriting this equation we get 8 - 0  = - H - ' ( 0 ) G ( e ) ,  and thus obtain the Newton-Raphson 
iterative equation 

where O(k)is the set of estimates obtained at the kth stage ofiteration. The estimates obtained by 
the above iterative equations usually converge, although, as is well known, they may not 
correspond to the global minimum of Q(0). 

If L denotes the likelihood function of ( X ( m ) ,  X ( m  +1),...,X(n)) ,  then we have, 
approximately, 

1 d2 log L - 1 1 d2 Q(0) 
n d0d0' 20; n d0 d0' ' 

Let 
1 d2 log L 
n d0d0' 

converge (element-wise) stochastically to I(0),where I(0)is Fisher's information matrix. Then as 
n + co, 

converges stochastically to 2o:I(0). Further as n + a,it can be shown that ( 8 - 0 )  has 
approximately a multivariate normal distribution with mean 0 and variance covariance matrix 
equal to I - ' (0). 
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Remarks. The model (5.1) is different from the model BL (p, 0, p, q) in the sense that (5.1) has 
an extra parameter a, which only affects the mean. It is found useful to include a constant a, 
when bilinear models are fitted to raw time series data. 

5.1. Initial Estimates 
To obtain a good set of estimates it is necessary that we should have a good set of initial 

values to start the iteration. We have tried two methods ofestimating the initial values. The first 
method consists offitting an AR ( p )model (with constant a, present) and taking these coefficients 
as initial values for the autoregressive part of the bilinear model BL(p,O,p,q) and setting 
blj= 0 (1 = 1,2,...,p; j = 1,2,...,q). The second method is as follows (with constant a, included): 

When a bilinear model of order BL (p, 0, p, q -1) is fitted, we take for the initial values the 
estimates obtained from BL (p, 0, p, q -1) or BL (p -1,0, p -1, q), which ever has the smallest 
residual sum of squares. If for the initial values the coefficients from the model BL (p, 0, p, q -1) 
is chosen, the rest of the p coefficients are put equal to zero. Similarly if the model 
BL (p -1,0,p-1, q) is chosen, the rest of the q + 1 coefficients are set equal to zero. 

5.2. Marquardt Algorithm 
An alternative to the Newton-Raphson technique is to use the Marquardt algorithm where 

only the first-order derivatives are necessary. For fitting the bilinear models, both these 
procedures are used, although in this paper only the results obtained from the 
Newton-Raphson technique are reported. 

Example 1. For our first illustration we consider the well-known Wolfer sunspot numbers for 
the years 1700-1955 (Walmeirer, 1961). Several linear and non-linear time series models have 
been fitted to these data. For example, to the sunspot numbers measured during the years 
1770-1869, Box and Jenkins (1970) have fitted an autoregressive model of order 2, and to the 
residuals obtained from this A R ( ~ )  model Granger and Andersen (1978a, p. 86) have fitted a 
bilinear model BL (1,0,1,1) and found that there is 13.5 per cent reduction in the mean sum of 
squares of residuals. A recent statistical test of Subba Rao and Gabr (1981) has shown that this 
time series is highly non-linear. Recently, Tong and Lim (1980) have fitted threshold 
autoregressive models to the same data. 

We now consider the choice of the order of the bilinear model. Using the estimation 
procedure described in the earlier section, the bilinear models of all orders up to BL (5,0,4,4) are 
fitted. The choice of the order is made on the basis of the information criterion of Akaike (1977), 
which is given by 

AIC = (N-M) log 8: +2 (independent number of parameters), (6.1)
where 

8: = -1 C e*2(t),

N - M  t = ~ +1 


and (N-M) is the number of observations used for calculating the likelihood function. For 

comparison of AIC values it is necessary that the likelihood function should be calculated over 

the same length ofdata for models of all orders. In view of this, for the sunspot numbers, we have 

omitted the first eight observations, (M = 8), and the estimation is done for the next 238 

observations. It is found that AIC is minimum when p = 3 and q = 4. The estimated values of 

the coefficients of t_he model are as follows: 6, = -1.93,6, = 1.46,6, = -0.27,6, = -10.9132, 
and the values of blj (1 = 1,2,3;j = 1,2,3,4) are given below in matrix form. 
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The values of 6; and AIC are 143.86 and 1214.58 respectively. 
The initial values of the parameters were obtained using the first method described in the 

previous section. 

Forecasting of sunspot numbers 
The performance of a time series model is judged on the basis of its forecasting performance. 

So it is natural to compare the forecasting performance of the fitted bilinear model with that of a 
fitted linear model. 

We make use of the first 246 observations of the sunspot numbers for fitting the model, and 
then compare the forecasts with the true values for the next ten observations. The fitted linear 
and bilinear models are as follows. (The first ten observations are omitted, M = 10.) 

AR model 
The sample mean of the 246 observations is subtracted from each observation and an 

autoregressive model is fitted to those deviations. The best AR model is found to be AR (9) and 
the fitted model is 

The mean sum of squares of residuals is 185.82 and the AIC value is 1253.053. 

Bilinear time series model 
As some coefficients of the full bilinear model fitted are small when compared to the other 

coefficients, it is natural to see if a reduction in mean sum of squares of residuals and AIC can be 
achieved by fitting a subset bilinear model. An algorithm for fitting a subset bilinear model has 
been developed by Mr M. M. Gabr and the author, and details will be reported elsewhere. The 
fitted bilinear model is 

The mean sum of squares of residuals is 141.18 and the AIC value is 1186.2. 
As a further test we obtained the one-step-ahead forecasts for the two mode1 (6.2) and (6.3). 

Suppose {X(t)) is a discrete parameter time series, and we wish to predict X(to +m) given the 
semi-infinite realizGion {X(s), -cc <s d  to). Let this predictor be Y,,(m). Then it is well known 
that E(X(to +m)-X,o(m))2 is minimum if and only if 

The values of R,,(l) from the models (6.2) and (6.3) are given in Table 1. 
The mean sum of squares of one-step-aheid forecast errors for the ten values for the bilinear 

model is 165126 and for the linear model is 484.394. The reduction in the mean sum ofsquares of 
errors is very substantial. 

Bilinear models have been fitted to other types of non-linear time series, and details will be 
discussed elsewhere. For a brief summary, see Subba Rao (1980). 

Example 2. For our second illustration we consider a seismic record obtained from an 
underground nuclear explosion that was carried out in the USA on October 29th, 1966. The 
record is that of a P-wave (pressure wave) and this event is nowadays commonly known as 
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TABLE 1 
One-step-ahead .forecasts of sunspot numbers 

True values 92.6 151.6 136.3 134.7 83.9 69.4 31.5 13.9 4.4 38.0 
X ( t )  

%(1) 59.8 120.0 157.7 104.1 105.5 45.2 40.4 10.4 4.9 22.9 
from (9.2) 

zt(1) 77.9 130.0 149.8 119.8 86.2 51.4 38.9 18.8 3.3 25.7 
from (9.3) 

"Longshot". The digitized record is obtained by sampling at the rate of 16 observations per 
second, giving altogether 512 observations. The graph of the record is given in Fig. 1. Dargahi- 
Noubary, Laycock and Subba Rao (1978) have fitted a linear AR model to these data. 

The test proposed by Subba Rao and Gabr (1981) shows that this series is highly non-linear, 
suggesting that a non-linear model may be more appropriate. 

The best linear AR model is found to be A R ( ~ ) ,  and the model fitted is 

The values of 6: and AIC are respectively 79.7 and 2227.5. 
The best bilinear time series model is found to be BL(6,0,5,1) and the fitted model is 

The values of 6: and AIC are respectively 63.2 and 2124.5. These two values are smaller than the 
corresponding values obtained from the linear model (6.4). The fitted bilinear model has more 
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parameters than the linear model, however, this is compensated by the amount of reduction in 
the mean residual sum of squares and AIC value. 

7. CONCLUSIONS 
Bilinear models have been developed by control engineers to describe the input-output 

relationship of a deterministic non-linear system. The advantage of this type of model is that it is 
a finite parameter model which can approximate to a reasonable accuracy the general Volterra 
series expansion. The validity of this approximation for stochastic time series data are under 
investigation. 

Granger and Andersen (1978a) have studied the properties of a simple bilinear time series 
model and thus have made a beginning in discussing the usefulness of these models in time series. 
In this paper the results have been extended to cover more general bilinear models. The theory 
of estimation of the parameters has also been considered and has been applied to sunspot 
numbers and seismological data. 

So far it has been argued in time series literature that if the time series under consideration is 
non-Gaussian a transformation, such as logarithmic transformation, may make the time series 
Gaussian. If one wishes to obtain forecasts of the time series, these can be obtained from the 
transformed data. As pointed out by Granger and Andersen (1978b, p. 31), these forecasts are 
biased and lead to a higher mean square error. In fact, the author (Subba Roa, 1980) has shown 
that the forecasting performance of the bilinear model fitted to the original Canadian lynx data 
(see Campbell and Walker, 1977) is better than the linear and non-linear models fitted to the 
transformed Canadian lynx data. This shows that if a time series is found to be non-Gaussian, 
one should consider fitting a non-linear time series model to the original data. One such non- 
linear time series model is the bilinear time series model. There are many theoretical problems 
still to be solved, which the author hopes to solve in due course. 
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